Linear Regression

DATA 606 - Statistics \& Probability for Data Analytics

Jason Bryer, Ph.D. and Angela Lui, Ph.D.
March 29, 2023

Announcements

Project Presentations

You can sign up for a presentation slot on this Google Sheet

Lab 5 There are two parts to lab 5 (a and b). Please submit both. If you only submitted one and received half credit you can submit the other part for full

No meetups on April 5th and 12th - Enjoy Spring Break!

Possible talk (in person) on April 25th. Please provide feedback here:
https://forms.gle/AnWBoSBFCMcHoXyy8
NY R Conference is July 13-14. See here for more info: https://rstats.ai / nyr.html

One Minute Paper Results

What was the most important thing you learned during this class?

What important question remains unanswered for you?

SAT Scores

We will use the SAT data for 162 students which includes their verbal and math scores. We will model math from verbal. Recall that the linear model can be expressed as:

$$
y=m x+b
$$

Or alternatively as:

$$
y=b_{1} x+b_{0}
$$

Where $\mathrm{m}\left(\right.$ or $\left.b_{1}\right)$ is the slope and $\mathrm{b}\left(\right.$ or $\left.b_{0}\right)$ is the intercept. Therefore, we wish to model:

$$
S A T_{\text {math }}=b_{1} S A T_{\text {verbal }}+b_{0}
$$

Data Prep

To begin, we read in the CSV file and convert the verbal and Math columns to integers. The data file uses . (i.e. a period) to denote missing values. The as.integer function will automatically convert those to NA (the indicator for a missing value in R). Finally, we use the complete.cases eliminate any rows with any missing values.

```
sat <- read.csv('../course_data/SAT_scores.csv', stringsAsFactors=FALSE)
names(sat) <- c('Verbal','Math','Sex')
sat$Verbal <- as.integer(sat$Verbal)
sat$Math <- as.integer(sat$Math)
sat <- sat[complete.cases(sat),]
```


Scatter Plot

The first step is to draw a scatter plot. We see that the relationship appears to be fairly linear.

Descriptive Statistics

```
Next, we will calculate the means and
( verbalSD <- sd(sat$Verbal) )
standard deviations.
( verbalMean <- mean(sat$Verbal) )
## [1] 596.2963
## [1] 98.13435
( n <- nrow(sat) )
## [1] 612.0988
## [1] 162
```


Correlation

The population correlation, rho, is defined as $\rho_{x y}=\frac{\sigma_{x y}}{\sigma_{x} \sigma_{y}}$ where the numerator is the covariance of x and y and the denominator is the product of the two standard deviations.

The sample correlation is calculated as $r_{x y}=\frac{\text { Cov }_{x y}}{s_{x} s_{y}}$
The covariates is calculated as $\operatorname{Cov}_{x y}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{n-1}$

```
(cov.xy <- sum( (sat$Verbal - verbalMean) * (sat$Math - mathMean) ) / (n - 1))
```

\#\# [1] 6686.082
cov(sat\$Verbal, sat\$Math)
\#\# [1] 6686.082

Correlation (cont.)

$$
r_{x y}=\frac{\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{n-1}}{s_{x} s_{y}}
$$

cov.xy / (verbalSD * mathSD)
\#\# [1] 0.6846061
cor (sat\$Verbal, sat\$Math)
\#\# [1] 0.6846061
http:// bcdudek.net/rectangles

z-Scores

Calcualte z-scores (standard scores) for the verbal and math scores.

$$
z=\frac{y-\bar{y}}{s}
$$

```
sat$Verbal.z <- (sat$Verbal - verbalMean) / verbalSD
```

sat\$Math.z <- (sat\$Math - mathMean) / mathSD
head (sat)

\#\#	Verbal	Math	Sex	Verbal.z	Math.z	
\#\# 1	450	450	F	-1.47002058	-1.65180456	
\#\#	2	640	540	F	0.43914539	-0.73469449
\#\# 3	590	570	M	-0.06326671	-0.42899113	
\#\# 4	400	400	M	-1.97243268	-2.16131016	
\#\# 5	600	590	M	0.03721571	-0.22518889	
\#\# 6	610	610	M	0.13769813	-0.02138665	

Scatter Plot of z-Scores

Scatter plot of z -scores. Note that the pattern is the same but the scales on the x - and y -axes are different.

Correlation

Calculate the correlation manually using the z-score formula:

$$
r=\frac{\sum z_{x} z_{y}}{n-1}
$$

```
r <- sum( sat$Verbal.z * sat$Math.z ) / ( n - 1 )
```

r
\#\# [1] 0.6846061

Or the cor function in R is probably simplier.

```
cor(sat$Verbal, sat$Math)
```

```
cor(sat$Verbal.z, sat$Math.z)
```

\#\# [1] 0.6846061

And to show that the units don't matter, calculate the correlation with the z-scores.

Calculate the slope.

$$
m=r \frac{S_{y}}{S_{x}}=r \frac{S_{m a t h}}{S_{v e r b a l}}
$$

```
m <- r * (mathSD / verbalSD)
```

m
\#\# [1] 0.6750748

Calculate the intercept

Recall that the point where the mean of x and mean of y intersect will be on the line of best fit). Therefore,

$$
b=\bar{y}-m \bar{x}=\overline{S A T_{\text {math }}}-m \overline{S A T_{\text {verbal }}}
$$

```
b <- mathMean - m * verbalMean
b
```

\#\# [1] 209.5542

Scatter Plot with Regression Line

We can now add the regression line to the scatter plot. The vertical and horizontal lines represent the mean Verbal and Math SAT scores, respectively.

Examine the Residuals

To examine the residuals, we first need to calculate the predicted values of y (Math scores in this example).

```
sat$Math.predicted <- m * sat$Verbal + b
sat$Math.predicted.z <- m * sat$Verbal.z + 0
head(sat, n=4)
\begin{tabular}{lrrrrrrr} 
\#\# & Verbal Math Sex & Verbal.z & Math.z & Math.predicted Math.predicted.z \\
\#\# 1 & 450 & 450 & F & -1.47002058 & -1.6518046 & 513.3378 & -0.99237384 \\
\#\# 2 & 640 & 540 & F & 0.43914539 & -0.7346945 & 641.6020 & 0.29645598 \\
\#\# 3 & 590 & 570 & M & -0.06326671 & -0.4289911 & 607.8483 & -0.04270976 \\
\#\# 4 & 400 & 400 & M & -1.97243268 & -2.1613102 & 479.5841 & -1.33153958
\end{tabular}
```


Examine the Residuals (cont.)

The residuals are simply the difference between the observed and predicted values.

```
sat$residual <- sat$Math - sat$Math.predicted
sat$residual.z <- sat$Math.z - sat$Math.predicted.z
head(sat, n=4)
```


Scatter Plot with Residuals

Plot our regression line with lines representing the residuals. The line of best fit minimizes the residuals.

O.

Scatter Plot with Residuals

Using the z-scores ensures that a 1 -unit change in the x-axis is the same as a 1 -unit change in the y-axis. This makes it easiert to plot the residuals as squares.

Minimizing Sum of Squared Residuals

What does it mean to minimize the sum of squared residuals?

To show that $m=r \frac{S_{y}}{S_{x}}$ minimizes the sum of squared residuals, this loop will calculate the sum of squared residuals for varying values of between -1 and 1 .

```
results <- data.frame(r=seq(-1, 1, by=.05),
    m=as.numeric(NA),
    b=as.numeric(NA),
    sumsquares=as.numeric(NA))
for(i in 1:nrow(results)) {
    results[i,]$m <- results[i,]$r * (mathSD / verbalSD)
    results[i,]$b <- mathMean - results[i,]$m * verbalMean
    predicted <- results[i,]$m * sat$Verbal + results[i,]$b
    residual <- sat$Math - predicted
    sumsquares <- sum(residual^2)
    results[i,]$sumsquares <- sum(residual^2)
}
```


Minimizing the Sum of Squared Residuals

Plot the sum of squared residuals for different slopes (i.e. r's). The vertical line corresponds to the r (slope) calcluated above and the horizontal line corresponds the sum of squared residuals for that r. This should have the smallest sum of squared residuals.

Regression Line with RSS

4.

Example of a "bad" model

To exemplify how the residuals change, the following scatter plot picks one of the "bad" models and plot that regression line with the original, best fitting line. Take particular note how the residuals would be less if they ended on the red line (i.e. the better fitting model). This is particularly evident on the far left and far right, but is true across the entire range of values.

```
b.bad <- results[1,]$b
m.bad <- results[1,]$m
sat$predicted.bad <- m.bad * sat$Verbal + b.bad
```


Example of a "bad" model

Residual Plot

Next, we'll plot the residuals with the independent variable. In this plot we expect to see no pattern, bending, or clustering if the model fits well. The rug plot on the right and top given an indication of the distribution. Below, we will also examine the histogram of residuals.

```
ggplot(sat, aes(x=Verbal, y=residual)) + geom_point() + geom_rug(sides='rt')
```


Scatter and Residual Plot, Together

In an attempt to show the relationship between the predicted value and the residuals, this figures combines both the basic scatter plot with the residuals. Each Math score is connected with the corresponding residual point.

Histogram of residuals

```
ggplot(sat, aes(x=residual)) + geom_histogram(alpha=.5, binwidth=25)
```


Calculate ${ }_{R^{2}}$

```
r^2
## [1] 0.4686855
```

This model accounts for 46.9% of the variance math score predicted from verbal score.

Prediction

Now we can predict Math scores from new Verbal.

```
newX <- 550
(new \(Y<-\) new \(X * m+b\) )
```

\#\# [1] 580.8453

Using R's built in function for linear modeling

The lm function in R will calculate everything above for us in one command.

```
sat.lm <- lm(Math ~ Verbal, data=sat)
summary(sat.lm)
## Call:
## lm(formula = Math ~ Verbal, data = sat)
##
## Residuals:
\begin{tabular}{lrrrrr} 
\# & Min & \(1 Q\) & Median & \(3 Q\) & Max \\
\(\# \#\) & -173.590 & -47.596 & 1.158 & 45.086 & 259.659
\end{tabular}
##
# Coefficients:
# Estimate Std. Error t value Pr(>|t|)
## (Intercept) 209.55417 34.34935 6.101 7.66e-09 ***
## Verbal 0.67507 0.05682 11.880 < 2e-16 ***
##
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 71.75 on 160 degrees of freedom
## Multiple R-squared: 0.4687, Adjusted R-squared: 0.4654
## F-statistic: 141.1 on 1 and 160 DF, p-value:< 2.2e-16
```


Predicted Values, Revisited

We can get the predicted values and residuals from the lm function

```
sat.lm.predicted <- predict(sat.lm)
sat.lm.residuals <- resid(sat.lm)
```

Confirm that they are the same as what we calculated above.
head(cbind(sat.lm.predicted,
sat\$Math.predicted), n=4)

```
sat.lm.predicted
    513.3378 513.3378
    641.6020 641.6020
    607.8483 607.8483
    479.5841 479.5841
```

\#\#	sat.lm.predicted		
\#\#	1	513.3378	513.3378
\#\#	2	641.6020	641.6020
\#\#	3	607.8483	607.8483
\#\#	4	479.5841	479.5841

head(cbind(sat.lm.residuals, sat\$residual), n=4)

```
sat.lm.residuals
## 1 -63.33782 -63.33782
## 2 -101.60203 -101.60203
## 3 -37.84829 -37.84829
## 4 -79.58408 -79.58408
```


Residuals - Implications for Grouping Variables

First, let's look at the scatter plot but with a gender indicator.

Residual Plot by Gender

And also the residual plot with an indicator for gender.

Histograms

The histograms also show that the distribution are different across gender.

Grouping Variable

Upon careful examination of these two figures, there is some indication there may be a difference between genders. In the scatter plot, it appears that there is a cluster of males towoards the top left and a cluster of females towards the right. The residual plot also shows a cluster of males on the upper left of the cluster as well as a cluster of females to the lower right. Perhaps estimating two separate models would be more appropriate.

To start, we create two data frames for each gender.

```
sat.male <- sat[sat$Sex == 'M',]
sat.female <- sat[sat$Sex == 'F',]
```


Descriptive Statistics

Calculate the mean for Math and Verbal for both males and females.

```
(male.verbal.mean <- mean(sat.male$Verbal))
## [1] 590.375
(male.math.mean <- mean(sat.male$Math))
## [1] 626.875
(female.verbal.mean <- mean(sat.female$Verbal))
## [1] 602.0732
(female.math.mean <- mean(sat.female$Math))
## [1] 597.6829
```


Two Regression Models

Estimate two linear models for each gender.

$\begin{array}{r} \text { sat.male. lm <- lm(Math } \sim \text { Verbal, } \\ \text { data=sat.male) } \end{array}$	$\begin{array}{r} \text { sat.female.lm <- lm(Math } \sim \text { Verbal, } \\ \text { data=sat.female) } \end{array}$
sat.male.lm	sat.female.lm
\#\#	\#\#
\#\# Call:	\#\# Call:
\#\# lm(formula $=$ Math \sim Verbal, data $=$ sat.male)	\#\# lm(formula $=$ Math \sim Verbal, data $=$ sat.female)
\#\#	\#\#
\#\# Coefficients:	\#\# Coefficients:
\#\# (Intercept) Verbal	\#\# (Intercept) Verbal
\#\# 250.1452 0.6381	\#\# 158.9965 0.7286

Two Regression Models Visualized

We do in fact find that the intercepts and slopes are both fairly different. The figure below adds the regression lines to the scatter plot.

Let's compare the R^{2} for the three models.

```
cor(sat$Verbal, sat$Math) ^ 2
## [1] 0.4686855
cor(sat.male$Verbal, sat.male$Math) ^ 2
## [1] 0.4710744
cor(sat.female$Verbal, sat.female$Math) ^ 2
## [1] 0.5137626
```

The R^{2} for the full model accounts for approximately 46.9% of the variance. By estimating separate models for each gender we can account for 47.1% and 51.4% of the variance for males and females, respectively.

Examining Possible Outliers

Re-examining the histogram of residuals, there is one data point with a residual higher than the rest. This is a possible outlier. In this section we'll examine how that outlier may impact our linear model.

Possible Outlier

We can extract that record from our data frame. We can also highlight that point on the scatter plot.

```
sat.outlier <- sat[sat$residual > 200,]
sat.outlier
\begin{tabular}{lrrrrrrrrr} 
\#\# & Verbal Math Sex Verbal.z & Math.z Math.predicted Math.predicted.z residual residual.z predicted.bad \\
\#\# 162 & 490 & 800 & F -1.068091 & 1.914735 & 540.3408 & -0.7210412 & 259.6592 & 2.635776 & 716.9152
\end{tabular}
```


Possible Outlier (cont.)

We see that excluding this point changes model slightly. With the outlier included we can account for 45.5% of the variance and by excluding it we can account for 47.9% of the variance. Although excluding this point improves our model, this is an insufficient enough reason to do so. Further explenation is necessary.

```
(sat.lm <- lm(Math ~ Verbal, data=sat))
##
## Call:
##
## Coefficients:
## (Intercept) Verbal
## 209.5542 0.6751
```

(sat. lm2 <- lm(Math \sim Verbal, $\quad \begin{aligned} \text { data } & =\operatorname{sat}[\text { sat } \$ \text { residual }<200,]))\end{aligned}$

```
##
## Call:
##
## Coefficients:
## (Intercept) Verbal
## 197.4697 0.6926
```

\#\# lm(formula $=$ Math \sim Verbal, data $=$ sat[sat\$residual

r^{2} with and without the outlier

summary (sat. lm) \$r.squared
\#\# [1] 0.4686855
summary (sat. lm2) \$r.squared
\#\# [1] 0.5013288

More outliers

For the following two examples, we will add outliers to examine how they would effect our models. In the first example, we will add an outlier that is close to our fitted model (i.e. a small residual) but lies far away from the cluster of points. As we can see below, this single point increases our R^{2} by more than 5\%.

```
outX <- 1200
outY <- 1150
sat.outlier <- rbind(sat[,c('Verbal','Math')], c(Verbal=outX, Math=outY))
```


Regression Models

```
(sat.lm <- lm(Math ~ Verbal,
        data=sat))
```

```
(sat.lm2 <- lm(Math ~ Verbal,
```

(sat.lm2 <- lm(Math ~ Verbal,

```
(sat.lm2 <- lm(Math ~ Verbal,
    data=sat.outlier))
    data=sat.outlier))
    data=sat.outlier))
## Call:
## lm(formula = Math ~ Verbal, data = sat)
##
## Coefficients:
## (Intercept) Verbal
## 209.5542 0.6751
```

```
##
```



```
##
```


Call:

```
## Call:
```


Call:

lm(formula = Math ~ Verbal, data = sat.outlier)

lm(formula = Math ~ Verbal, data = sat.outlier)

lm(formula = Math ~ Verbal, data = sat.outlier)

Coefficients:

Coefficients:

Coefficients:

(Intercept) Verbal

(Intercept) Verbal

(Intercept) Verbal

186.372 0.715

```
## 186.372 0.715
```


186.372 0.715

```

\section*{Scatter Plot}


\section*{summary (sat. lm) \$r.squared}

\section*{\#\# [1] 0.4686855}
summary (sat. lm2) \$r. squared
\#\# [1] 0.5443222

\section*{Outliers}

Outliers can have the opposite effect too. In this example, our \(R^{2}\) is decreased by almost \(16 \%\).
```

outX <- 300
outY <- 1150
sat.outlier <- rbind(sat[,c('Verbal','Math')], c(Verbal=outX, Math=outY))
(sat.lm <- lm(Math ~ Verbal,
(sat.lm <- lm(Math ~ Verbal

```
```

(sat.lm2 <- lm(Math ~ Verbal,

```
(sat.lm2 <- lm(Math ~ Verbal,
```

(sat.lm2 <- lm(Math ~ Verbal,
data=sat.outlier))

```
    data=sat.outlier))
```

 data=sat.outlier))
    ```
```



```
##
##
##
## lm(formula = Math ~ Verbal, data = sat)
## lm(formula = Math ~ Verbal, data = sat)
##
##
## Coefficients:
## Coefficients:
## (Intercept) Verbal
## (Intercept) Verbal
## 209.5542 0.6751
## 209.5542 0.6751
##
## Call:
## lm(formula = Math ~ Verbal, data = sat.outlier)
##
##
## Coefficients:
## (Intercept) Verbal
## 290.8915 0.5459
```


summary (sat. lm) \$r.squared

\#\# [1] 0.4686855

summary (sat. lm2) \$r.squared
\#\# [1] 0.2726476

One Minute Paper

Complete the one minute paper:
https://forms.gle/p9xcKcTbGiyYSz368

1. What was the most important thing you learned during this class?
2. What important question remains unanswered for you?
