Summarizing Data Part 2
Click here to open the slides (PDF).
my_formula <- y ~ m * x + b class(my_formula) my_formula all.vars(my_formula) data(mtcars) mtcars_formula <- mpg ~ wt + cyl mtcars$cyl <- as.factor(mtcars$cyl) mtcars[,all.vars(mtcars_formula)] mtcars[,all.vars(mtcars_formula)[1]] mm <- model.matrix(mtcars_formula, data = mtcars) class(mm) boxplot(mtcars$mpg) boxplot(mpg ~ cyl, data = mtcars) library(ggplot2) mean_pieces <- mean(legosets$pieces, na.rm = TRUE) ggplot() + geom_hline(yintercept = mean(legosets$US_retailPrice, na.rm = TRUE)) + geom_vline(xintercept = mean_pieces) + geom_point(data = legosets, aes(x=pieces, y=US_retailPrice, color=availability)) desc <- psych::describeBy(legosets$pieces, group = legosets$availability, mat = TRUE, skew = FALSE) desc ggplot() + geom_boxplot(data = legosets, aes(x = availability, y = pieces)) + # geom_vline(xintercept = mean(legosets$pieces, na.rm = TRUE)) + geom_errorbar(data = desc, aes(x = group1, ymin = mean - se, ymax = mean + se), color = 'darkgreen') + geom_point(data = desc, aes(x = group1, y = mean), color = 'blue', size = 3) + scale_y_log10() + # coord_flip() theme_minimal() + theme(axis.text.x = element_text(angle = 45)) ggplot(legosets, aes(x = US_retailPrice)) + geom_histogram(binwidth = 20) ggplot(legosets, aes(x = US_retailPrice)) + geom_density(color = 'blue') + scale_x_log10()